Макроэргические соединения и связи. Какие связи называются макроэргическими? Учебные и воспитательные цели

Любое наше движение или мысль требуют от организма затрат энергии. Этой силой запасается каждая клетка тела и накапливает ее в биомолекулах с помощью макроэргических связей. Именно эти молекулы-батарейки обеспечивают все процессы жизнедеятельности. Постоянный обмен энергией внутри клеток обуславливает саму жизнь. Что представляют собой эти биомолекулы с макроэргическими связями, откуда они берутся, и что происходит с их энергией в каждой клетке нашего тела - об этом речь в статье.

Биологические посредники

В любом организме энергия от энергогенерирующего агента к биологическому потребителю энергии не переходит напрямую. При разрыве внутримолекулярных связей пищевых продуктов выделяется потенциальная энергия химических соединений, намного превосходящая возможности внутриклеточных ферментативных систем использовать ее. Именно поэтому в биологических системах освобождение потенциальных химических веществ происходит ступенчато с поэтапным преобразованием их в энергию и накоплением ее в макроэргических соединениях и связях. И именно биомолекулы, которые способны к такой аккумуляции энергии, называют высокоэнергетичными.

Какие связи называются макроэргическими?

Уровень свободной энергии в 12,5 кДж/моль, которая образуется при образовании или распаде химической связи считается нормальной. Когда при гидролизе некоторых веществ происходит образование свободной энергии больше 21 кДж/моль, то это называют связями макроэргическими. Они обозначаются символом "тильда" - ~. В отличие от физической химии, где под макроэргической связью подразумевается ковалентная связь атомов, в биологии имеют в виду разность между энергией исходных агентов и продуктов их распада. То есть, энергия не локализована в конкретной химической связи атомов, а характеризует всю реакцию. В биохимии говорят о химическом сопряжении и образовании макроэргического соединения.

Универсальный биоисточник энергии

Все живые организмы на нашей планете имеют один универсальный элемент запасания энергии - это макроэргическая связь АТФ - АДФ - АМФ ди, монофосфорная кислота). Это биомолекулы, которые состоят из азотосодержащей основы аденина, прикрепленного к углеводу рибоза, и присоединенным остаткам ортофосфорной кислоты. Под действием воды и фермента рестриктазы молекула аденозинтрифосфорной кислоты (C 10 H 16 N 5 O 13 P 3) может распасться на молекулу аденозиндифосфорной кислоты и ортофосфатную кислоту. Эта реакция сопровождается выделением свободной энергии порядка 30,5 кДж/моль. Все процессы жизнедеятельности в каждой клетке нашего тела происходят при аккумуляции энергии в АТФ и использовании ее при разрыве связей между остатками ортофосфорной кислоты.

Донор и акцептор

К макроэргическим соединениям относят еще и вещества с длинными названиями, которые могут образовывать молекулы АТФ в реакциях гидролиза (например, пирофосфорная и пировиноградная кислоты, сукцинилкоферменты, аминоацильные производные рибонуклеиновых кислот). Все эти соединения содержат атомы фосфора (P) и серы (S), между которыми и находятся высокоэнергетические связи. Именно энергия, которая высвобождается при разрыве макроэргической связи в АТФ (донор), поглощается клеткой при синтезе собственных органических соединений. И в то же время запасы этих связей постоянно пополняются при аккумулировании энергии (акцептор), выделяющейся при гидролизе макромолекул. В каждой клетке человеческого организма эти процессы происходят в митохондриях, при этом продолжительность существования АТФ меньше 1 минуты. За сутки наш организм синтезирует порядка 40 килограммов АТФ, которые проходят до 3 тысяч циклов распада каждая. А в каждый отдельно взятый момент в нашем организме присутствует порядка 250 грамм АТФ.

Функции высокоэнергетичных биомолекул

Кроме функции донора и акцептора энергии при процессах распада и синтеза высокомолекулярных соединений, молекулы АТФ играют еще несколько очень важных ролей в клетках. Энергия разрыва макроэргических связей используется в процессах теплообразования, механической работы, накопления электричества, свечения. При этом преобразование энергии химических связей в тепловую, электрическую, механическую одновременно служит и этапом энергетического обмена с последующим запасанием в тех же макроэнергетических связях АТФ. Все эти процессы в клетке называются пластическим и энергетическим обменами (схема на рисунке). Молекулы АТФ выступают еще и в роли коферментов, регулируя активность некоторых ферментов. Кроме того, АТФ может быть и медиатором, сигнальным агентом в синапсах нервных клеток.

Поток энергии и вещества в клетке

Таким образом, АТФ в клетке занимает центральное и главное место в обмене материи. Реакций, посредством которых возникает и распадается АТФ, довольно много и субстратное, гидролиз). Биохимические реакции синтеза этих молекул обратимы, при определенных условиях они в клетках смещаются в сторону синтеза или распада. Пути этих реакций отличаются по количеству превращений веществ, типу окислительных процессов, по способам сопряжения энергоподающих и энергопотребляющих реакций. Каждый процесс имеет четкие приспособления к обработке конкретного вида «топлива» и свои пределы эффективности.

Оценка эффективности

Показатели эффективности преобразования энергии в биосистемах невелики и оцениваются в стандартных величинах коэффициента полезного действия (отношения полезной, потраченной на выполнение работы, к общей затраченной энергии). Но вот, на обеспечение выполнения биологических функций, затраты необходимы очень большие. Например, бегун, в пересчете на единицу массы, тратит столько энергии, сколько и большой океанский лайнер. Даже в состоянии покоя поддержание жизни организма - это тяжелая работа, и на нее тратится порядка 8 тысяч кДж/моль. При этом на синтез белков расходуется около 1,8 тысячи кДж/моль, на работу сердца - 1,1 тысячи кДж/моль, а вот на синтез АТФ - до 3,8 тысячикДж/моль.

Аденилатная система клеток

Это система, которая включает сумму всех АТФ, АДФ и АМФ в клетке в конкретный период времени. Величину эту и соотношение компонентов определяет энергетический статус клетки. Оценивается система по показателю энергетического заряда системы (отношение фосфатных групп к остатку аденозина). Если в клетке макроэргические соединения представлены только АТФ - она имеет наивысший энергетический статус (показатель -1), если только АМФ - минимальный статус (показатель - 0). В живых клетках, обычно, поддерживаются показатели 0,7-0,9. Стабильность энергетического статуса клетки определяет скорость ферментативных реакций и поддержку оптимального уровня жизнедеятельности.

И немного про энергетические станции

Как уже говорилось, синтез АТФ происходит в специализированных органеллах клетки - митохондриях. И сегодня в среде биологов ведутся споры по поводу происхождения этих удивительных структур. Митохондрии - это электростанции клетки, «топливом» для которых являются белки, жиры, гликоген, а электричеством - молекулы АТФ, синтез которых проходит при участии кислорода. Можно сказать, что мы дышим, чтобы митохондрии работали. Чем большую работу должны выполнять клетки, тем больше им необходимо энергии. Читай - АТФ, а значит - митохондрий.

Например, у профессионального спортсмена в скелетных мышцах содержится порядка 12% митохондрий, а у неспортивного обывателя их вполовину меньше. А вот в сердечной мышце их показатель - 25%. Современные методики тренировок спортсменов, особенно марафонцев, основан на показателях МКП (максимального потребления кислорода), который напрямую зависит от количества митохондрий и способности мышц выполнять длительные нагрузки. Ведущие тренировочные программы для профессионального спорта направлены на стимуляцию синтеза митохондрий в клетках мышц.

Источником энергии для организма человека служат процессы окисления химических органических соединений до менее энергетически ценных конечных продуктов. С помощью ферментных систем происходит извлечение энергии из внешних субстратов (питательный веществ) в реакциях их ступенчатого окисления, приводящего к высвобождению энергии небольшими порциями. Внешние источники энергии должны быть трансформированы в клетке в определенную форму, удобную для обеспечения внутриклеточных энергетических нужд. Такой формой преимущественно является молекула аденозинтрифосфат (АТФ) , представляющая мононуклеотид. АТФ является макроэргическим соединением, оно содержит две связи богатые энергией (макроэргические связи): между вторым и третьим остатками фосфорной кислоты. Макроэргические связи – ковалентные связи в химических соединениях клетки, которые гидролизуются с выделением значительного количества энергии – 30 кДж/моль и более. При гидролизе каждой из макроэргических связей в молекуле АТФ выделяется около 32 кДж/моль. Гидролиз АТФ осуществляют специальные ферменты, называемые АТФ-азами:В клетке существуют и другие макроэргические соединения. Большинство из них, также как и АТФ, содержат высокоэнергетическую фосфатную связь. К этой группе соединений относятся и другие нуклеозидтрифосфаты, ацилфосфаты, фосфоенолпируват, креатинфосфат и другие молекулы. Кроме того, в живых организмах присутствуют молекулы с высокоэнергетической тиоэфирной связью, ацилтиоэфиры.Однако наибольшую роль в энергетических клеточных процессов играет все же молекула АТФ. Эта молекула обладает рядом свойств, позволяющей ей занимать столь значительное место в клеточном метаболизме. Во-первых, молекула АТФ термодинамически нестабильна, о чем говорит изменение свободной энергии гидролиза АТФ DG0 = –31,8 кДж/моль. Во-вторых, молекула АТФ химически высокостабильна. Скорость неферментативного гидролиза АТФ в нормальных условиях очень мала, что позволяет эффективно сохранять энергию, препятствуя ее бесполезному рассеиванию в тепло. В-третьих, молекула АТФ обладает малыми размерами, что позволяет ей поступать в различные внутриклеточные участки путем диффузии. И, наконец, энергия гидролиза АТФ имеет промежуточное значение по сравнению с другими фосфорилированными клеточными молекулами, что позволяет АТФ переносить энергию от высокоэнергетических соединений к низкоэнергетическим.

Существуют два механизма синтеза АТФ в клетке: субстратное фосфорилирование и мембранное фосфорилирование. Субстратное фосфорилирование – ферментативный перенос фосфатной группы на молекулы АДФ с образованием АТФ, происходящий в цитоплазме. При субстратном фосфорилировании в результате определенных окислительно-восстановительных реакций образуются богатые энергией нестабильные молекулы, фосфатная группа которых с помощью соответствующих ферментов переносится на АДФ с образованием АТФ. Реакции субстратного фосфорилирования протекают в цитоплазме и катализируются растворимыми ферментами.Мембранное фосфорилирование – синтез молекулы АТФ с использованием энергии трансмембранного градиента ионов водорода, происходящий на мембране митохондрий. Мембранное фосфорилирование происходит на мембране митохондрий, в которой локализована определенная цепь молекул-переносчиков водорода и электронов. Атомы водорода и электроны отщепляются от окисляющихся органических молекул и с помощью специальных переносчиков попадают в электронтранспортную цепь (дыхательную цепь), локализованную на внутренней мембране митохондрий. Эта цепь представляет собой комплекс мембранных белков, расположенных строго определенным образом. Эти белки являются ферментами, катализирующими окислительно-восстановительные реакции. Переходя от одного белка-переносчика дыхательной цепи к другому, электрон спускается на все более низкий энергетический уровень. Перенос электронов по электронтранспортной цепи сопряжен с выделением протонов из клетки во внешнюю среду. В результате внешняя часть клеточной мембраны приобретает положительный заряд, а внутренняя – отрицательный, возникает разделение зарядов. Кроме того, на мембране образуется градиент ионов водорода. Таким образом, энергия, высвобождаемая при переносе электронов, первоначально запасается в форме электрохимического трансмембранного градиента ионов водорода (DmН+) . То есть происходит превращение химической и электромагнитной энергии в электрохимическую, которая может быть в дальнейшем использована клеткой для синтеза АТФ. Реакция синтеза АТФ за счет DmН+ и называется мембранным фосфорилированием; мембраны, на которых она осуществляется – энергопреобразующими или сопрягающими . Превращение энергии, освобождающейся при электронном транспорте, в энергию фосфатной связи АТФ объясняет хемоосмотическая теория энергетического сопряжения (рис. 8), разработанная английским биохимиком П. Митчеллом. Сопрягающую мембрану можно уподобить плотине, которая сдерживает напор воды, также как и мембрана сдерживает градиент ионов водорода. Если плотину открыть, то энергия воды может быть использована для выполнения работы или преобразована в другую форму энергии, например электрическую, как это и происходит в гидроэлектростанциях. Аналогично в клетке имеется механизм, позволяющий преобразовать энергию трансмембранного градиента ионов водорода в энергию химической связи АТФ. Разрядка трансмембранного градиента ионов водорода происходит с участием локализованного в той же мембране протонного АТФ-синтазного комплекса . Энергия протона, поступающего через этот ферментативный комплекс в клетку из внешней среды, используется для синтеза молекулы АТФ из АДФ и остатка фосфорной кислоты. Происходящий процесс может быть выражен уравнением:

АДФ + Фн+ nН+нар à АТФ + Н2О + nН+внутр.


Главными материальными носителями свободной энергии в органических веществах являются химические связи между атомами, поэтому при преобразовании химических связей в молекуле уровень свободной энергии соединения изменяется. Если изменение уровня свободной энергии соединения при возникновении или распаде химической связи составляет около 12,5 кДж/моль преобразуемого вещества, то такая связь по своему энергетическому уровню считается нормальной. Именно такую размерность имеет изменение уровня свободной энергии при преобразовании большинства связей в органических соединениях. Однако при новообразовании и распаде некоторых связей уровень свободной энергии в молекулах ряда органических соединений изменяется в гораздо большей степени и составляет 25-50 кДж/моль и более. Такие соединения называются макроэргическими соединениями, а связи, при преобразовании которых наступают столь крупные изменения в энергетическом балансе вещества, ‒ макроэргическими связями. Последние в отличие от обычных связей обозначают значком “~”.

Макроэргические связи представлены преимущественно сложноэфирными, в том числе и тиоэфирными, ангидридными и фосфоамидными связями. Однако наиболее интересно, что почти все известные соединения с макроэргическими связями содержат атомы Р и S, по месту которых в молекуле эти связи локализованы.

Именно та энергия, которая высвобождается при разрыве макроэргических связей, поглощается при синтезе органических соединений с более высоким уровнем свободной энергии, чем исходные. В то же время запасы макроэргических веществ в организме постоянно пополняются путем аккумулирования энергии, выделяющейся при понижении энергетического уровня распадающихся соединений.

Таким образом, макроэргические вещества выполняют функцию и доноров, и акцепторов энергии в обмене веществ; они служат как аккумуляторами, так и проводниками энергии в биохимических процессах. Кроме того, им свойственна роль трансформаторов энергии, так как они способны преобразовывать стационарную форму энергии химической связи в мобильную, т.е. в энергию возбужденного состояния молекулы. Последний вид энергии и служит непосредственным источником реакционной способности молекул; преобразуясь снова в стационарную форму энергии химической связи, он энергетически обеспечивает видоизменение веществ, их преобразование, т.е. их обмен в организме.

К макроэргическим соединениям относятся, главным образом, аденозинтрифосфорная кислота (АТФ) и вещества, способные образовывать АТФ в ферментативных реакциях переноса преимущественно фосфатных групп, а также нуклеозидтри- (или ди) -фосфорные кислоты, пирофосфорная и полифосфорная кислоты, креатинфосфорная, фосфопировиноградная, дифосфоглицериновая кислоты, ацетил- и сукцинилкоферменты А, аминоацильные производные адениловой и рибонуклеиновых кислот и другие.

Аденозинтрифосфорная кислота (АТФ)

Энергия, которая выделяется при распаде макроэргических соединений и за счет которой может быть совершена та или иная работа, используется не только для химического синтеза. Она может служить в организме для теплообразования, свечения, накопления электричества, выполнения механической работы и т. п. При этом химическая энергия преобразуется в тепловую, лучистую, электрическую, механическую и пр. Принципиально важно то, что преобразование химической энергии в другие ее виды протекает в организме при обязательном участии соединений с макроэргическими связями, в частности АТФ. В молекуле АТФ происходит трансформация стабильной энергии макроэргических межфосфатных химических связей в подвижную энергию возбуждения электронов пуриновой части молекулы; это и есть, вероятно, первый этап преобразования энергии в организме. Именно поэтому АТФ занимает центральное место в энергетическом обмене живой материи.

Как видно из рис. 1, АТФ играет выдающуюся роль как при запасании, так и при расходовании энергии, т.е. является ключевым веществом в энергетическом обмене организма. Известно много реакций, при посредстве которых АТФ возникает из других макроэргических соединений, и наоборот, есть много процессов, приводящих к синтезу макроэргических соединений при участии АТФ. Такие, например, макроэргические соединения, как креатинфосфат, фосфоенолпировиноградная кислота и 1,3-дифосфоглицериновая кислота, при взаимодействии с АДФ образуют АТФ с выделением креатина, пировиноградной кислоты и 3-фосфоглицериновой кислоты. Эти и подобные им соединения принято обозначать как АТФ-генерирующие вещества. Перечисленные реакции обратимы, и при известных условиях равновесие может быть смещено в сторону распада АТФ.

Рис. 1. Превращения энергии в живой клетке

Обмен энергии в процессе жизнедеятельности не исчерпывается превращением химической энергии в другие виды ее и наоборот (рис. 1); он носит более широкий характер. Так, в палочках и колбочках сетчатки глаза световая энергия превращается в электрическую; в специфических структурах внутреннего уха звуковая и гидродинамическая энергия переходит в электрическую и т.п.

Трансформация одного вида энергии в другой осуществляется в организмах в морфологически разнообразных элементах ‒ хлоропластах, мышцах, рецепторных аппаратах тканей и органов, сетчатке глаза, люминесцентных органах и т. п. Однако всем этим разнообразным элементам свойственны некоторые общие черты строения. Они отличаются наличием двухслойных мембран с высоким содержанием липопротеинов в них и присутствием структурного белка, связывающего в упорядоченные образования достаточно унифицированные элементарные частицы. Последние включают в свой состав молекулы определенного строения, которые, собственно, и осуществляют процесс трансформации энергии. При этом энергия одного вида поглощается молекулой-преобразователем и превращается в энергию другого вида. Простейшим примером механизма внутримолекулярного превращения энергии молекулой-преобразователем служит переход стационарной энергии химических связей трифосфатной группировки молекулы АТФ в подвижную энергию возбуждения электронов ее пуриновой части. Более сложным примером являются конформационные изменения белковых молекул в процессе преобразования одного вида энергии в другой (например, мышечное сокращение).

Обмен веществ и энергии представляет единый, неразрывный процесс, где видоизменение вещества всегда сопровождается выделением или поглощением свободной энергии и где выделившаяся или поглотившаяся в том или ином количестве энергия обеспечивает распад или синтез химических связей, т.е. по существу видоизменение самих веществ.



Источником энергии для организма человека служат процессы окисления химических органических соединений до менее энергетически ценных конечных продуктов. С помощью ферментных систем происходит извлечение энергии из внешних субстратов (питательный веществ) в реакциях их ступенчатого окисления, приводящего к высвобождению энергии небольшими порциями. Внешние источники энергии должны быть трансформированы в клетке в определенную форму, удобную для обеспечения внутриклеточных энергетических нужд. Такой формой преимущественно является молекула аденозинтрифосфат (АТФ) , представляющая мононуклеотид (рис. 6).

Рис. 6. Структурная формула молекулы аденозинтрифосфорной кислоты (АТФ)

АТФ является макроэргическим соединением , оно содержит две связи богатые энергией (макроэргические связи) : между вторым и третьим остатками фосфорной кислоты. Макроэргические связи – ковалентные связи в химических соединениях клетки, которые гидролизуются с выделением значительного количества энергии – 30 кДж/моль и более. При гидролизе каждой из макроэргических связей в молекуле АТФ выделяется около 32 кДж/моль. Гидролиз АТФ осуществляют специальные ферменты, называемые АТФ-азами:

АТФ ® АДФ + Н3РО4; АДФ ® АМФ + Н3РО4

В клетке существуют и другие макроэргические соединения. Большинство из них, также как и АТФ, содержат высокоэнергетическую фосфатную связь. К этой группе соединений относятся и другие нуклеозидтрифосфаты, ацилфосфаты, фосфоенолпируват, креатинфосфат и другие молекулы. Кроме того, в живых организмах присутствуют молекулы с высокоэнергетической тиоэфирной связью, ацилтиоэфиры (рис. 7).

Однако наибольшую роль в энергетических клеточных процессов играет все же молекула АТФ. Эта молекула обладает рядом свойств, позволяющей ей занимать столь значительное место в клеточном метаболизме. Во-первых, молекула АТФ термодинамически нестабильна, о чем говорит изменение свободной энергии гидролиза АТФ DG0 = –31,8 кДж/моль. Во-вторых, молекула АТФ химически высокостабильна. Скорость неферментативного гидролиза АТФ в нормальных условиях очень мала, что позволяет эффективно сохранять энергию, препятствуя ее бесполезному рассеиванию в тепло. В-третьих, молекула АТФ обладает малыми размерами, что позволяет ей поступать в различные внутриклеточные участки путем диффузии. И, наконец, энергия гидролиза АТФ имеет промежуточное значение по сравнению с другими фосфорилированными клеточными молекулами, что позволяет АТФ переносить энергию от высокоэнергетических соединений к низкоэнергетическим.


Рис. 7. Типы соединений, для которых характерна высокая энергия гидролиза

Существуют два механизма синтеза АТФ в клетке: субстратное фосфорилирование и мембранное фосфорилирование. Субстратное фосфорилирование – ферментативный перенос фосфатной группы на молекулы АДФ с образованием АТФ, происходящий в цитоплазме. При субстратном фосфорилировании в результате определенных окислительно-восстановительных реакций образуются богатые энергией нестабильные молекулы, фосфатная группа которых с помощью соответствующих ферментов переносится на АДФ с образованием АТФ. Реакции субстратного фосфорилирования протекают в цитоплазме и катализируются растворимыми ферментами.

Мембранное фосфорилирование – синтез молекулы АТФ с использованием энергии трансмембранного градиента ионов водорода, происходящий на мембране митохондрий. Мембранное фосфорилирование происходит на мембране митохондрий, в которой локализована определенная цепь молекул-переносчиков водорода и электронов. Атомы водорода и электроны отщепляются от окисляющихся органических молекул и с помощью специальных переносчиков попадают в электронтранспортную цепь (дыхательную цепь), локализованную на внутренней мембране митохондрий. Эта цепь представляет собой комплекс мембранных белков, расположенных строго определенным образом. Эти белки являются ферментами, катализирующими окислительно-восстановительные реакции. Переходя от одного белка-переносчика дыхательной цепи к другому, электрон спускается на все более низкий энергетический уровень. Перенос электронов по электронтранспортной цепи сопряжен с выделением протонов из клетки во внешнюю среду. В результате внешняя часть клеточной мембраны приобретает положительный заряд, а внутренняя – отрицательный, возникает разделение зарядов. Кроме того, на мембране образуется градиент ионов водорода. Таким образом, энергия, высвобождаемая при переносе электронов, первоначально запасается в форме электрохимического трансмембранного градиента ионов водорода ( D mН+) . То есть происходит превращение химической и электромагнитной энергии в электрохимическую, которая может быть в дальнейшем использована клеткой для синтеза АТФ. Реакция синтеза АТФ за счет DmН+ и называется мембранным фосфорилированием; мембраны, на которых она осуществляется – энергопреобразующими или сопрягающими . Превращение энергии, освобождающейся при электронном транспорте, в энергию фосфатной связи АТФ объясняет хемоосмотическая теория энергетического сопряжения (рис. 8), разработанная английским биохимиком П. Митчеллом. Сопрягающую мембрану можно уподобить плотине, которая сдерживает напор воды, также как и мембрана сдерживает градиент ионов водорода. Если плотину открыть, то энергия воды может быть использована для выполнения работы или преобразована в другую форму энергии, например электрическую, как это и происходит в гидроэлектростанциях. Аналогично в клетке имеется механизм, позволяющий преобразовать энергию трансмембранного градиента ионов водорода в энергию химической связи АТФ. Разрядка трансмембранного градиента ионов водорода происходит с участием локализованного в той же мембране протонного АТФ-синтазного комплекса . Энергия протона, поступающего через этот ферментативный комплекс в клетку из внешней среды, используется для синтеза молекулы АТФ из АДФ и остатка фосфорной кислоты. Происходящий процесс может быть выражен уравнением:

АДФ + Фн+ nН+нар à АТФ + Н2О + nН+внутр.

АТФ-синтазный ферментативный комплекс служит механизмом, обеспечивающим взаимопревращение двух форм клеточной энергии: DmН+ « АТФ.

Рис. 8. Схема работы электронтранспортной цепи и АТФ-синтазного комплекса АН 2 и В – донор и акцептор электронов, соответственно; 1 , 2 , 3 – компоненты электронтранспортной цепи

Стартовым переносчиком дыхательной цепи митохондрий является НАД(Ф)Н-дегидрогеназа, имеющая флавиновую природу. Этот фермент акцептирует протоны и электроны от первичной дегидрогеназы, фермента, отнимающего атомы водорода непосредственно с субстрата. С НАД(Ф)Н-дегидрогеназы электроны передаются на переносчик хиноновой природы, убихинон (кофермент Q), а далее на цитохромы (рис. 9). В митохондриях имеется 5 различных цитохромов (b, c, c1, a, a3). Цитохромы представляют собой гемопротеины, их небелковая часть является гемом и содержит катион металла. Цитохромы окрашены в красно-коричневый цвет. Цитохромы классов b и c содержат катион железа, а цитохромы класса a – катион меди.

Рис. 9. Дыхательная электронтранспортная цепь митохондрий

Конечный цитохром (a+a3) переносит электроны на кислород, т.е. является цитохромоксидазой. На кислород переносится 4 электрона и образуется вода. При синтезе молекулы АТФ через АТФ-синтазный комплекс проходит по крайней мере два протона. Количество синтезируемых молекул АТФ зависит от числа участков цепи, в которых протоны выделяются во внешнею среду. В митохондрии есть 3 участка окислительной цепи, где протоны выводятся наружу и генерируется Dmн+: в начале цепи на НАД(Ф)Н-дегидогеназе, на убихиноне и на цитохромоксидазе (рис. 9). В митохондриях при окислении одной молекулы НАД(Ф)Н по цепи переносится два электрона, а во внешнею среду выводится 6Н+ и, соответственно, синтезируется три молекулы АТФ.

1. Какие слова пропущены в предложении и заменены буквами (а-г)?

"В состав молекулы АТФ входит азотистое основание (а), пятиуглеродный моносахарид (б) и (в) остатка (г) кислоты."

Буквами заменены следующие слова: а – аденин, б – рибоза, в – три, г – фосфорной.

2. Сравните строение АТФ и строение нуклеотида. Выявите сходство и различия.

Фактически АТФ представляет собой производное аденилового нуклеотида РНК (аденозинмонофосфата, или АМФ). В состав молекул обоих веществ входит азотистое основание аденин и пятиуглеродный сахар рибоза. Различия связаны с тем, что в составе аденилового нуклеотида РНК (как и в составе любого другого нуклеотида) есть лишь один остаток фосфорной кислоты, и отсутствуют макроэргические (высокоэнергетические) связи. Молекула АТФ содержит три остатка фосфорной кислоты, между которыми имеются две макроэргические связи, поэтому АТФ может выполнять функцию аккумулятора и переносчика энергии.

3. Что представляет собой процесс гидролиза АТФ? Синтеза АТФ? В чём заключается биологическая роль АТФ?

В процессе гидролиза происходит отщепление от молекулы АТФ одного остатка фосфорной кислоты (дефосфорилирование). При этом разрывается макроэргическая связь, высвобождается 40 кДж/моль энергии и АТФ превращается в АДФ (аденозиндифосфорную кислоту):

АТФ + Н 2 О → АДФ + Н 3 РО 4 + 40 кДж

АДФ может подвергаться дальнейшему гидролизу (что происходит редко) с отщеплением ещё одной фосфатной группы и выделением второй «порции» энергии. При этом АДФ преобразуется в АМФ (аденозинмонофосфорную кислоту):

АДФ + Н 2 О → АМФ + Н 3 РО 4 + 40 кДж

Синтез АТФ происходит в результате присоединения к молекуле АДФ остатка фосфорной кислоты (фосфорилирование). Этот процесс осуществляется главным образом в митохондриях и хлоропластах, частично в гиалоплазме клеток. Для образования 1 моль АТФ из АДФ должно быть затрачено не менее 40 кДж энергии:

АДФ + Н 3 РО 4 + 40 кДж → АТФ + Н 2 О

АТФ является универсальным хранителем (аккумулятором) и переносчиком энергии в клетках живых организмов. Практически во всех биохимических процессах, идущих в клетках с затратами энергии, в качестве поставщика энергии используется АТФ. Благодаря энергии АТФ синтезируются новые молекулы белков, углеводов, липидов, осуществляется активный транспорт веществ, движение жгутиков и ресничек, происходит деление клеток, осуществляется работа мышц, поддерживается постоянная температура тела теплокровных животных и т. д.

4. Какие связи называются макроэргическими? Какие функции могут выполнять вещества, содержащие макроэргические связи?

Макроэргическими называют связи, при разрыве которых выделяется большое количество энергии (например, разрыв каждой макроэргической связи АТФ сопровождается высвобождением 40 кДж/моль энергии). Вещества, содержащие макроэргические связи, могут служить аккумуляторами, переносчиками и поставщиками энергии для осуществления различных процессов жизнедеятельности.

5. Общая формула АТФ - С 10 H 16 N 5 O 13 P 3 . При гидролизе 1 моль АТФ до АДФ выделяется 40 кДж энергии. Сколько энергии выделится при гидролизе 1 кг АТФ?

● Рассчитаем молярную массу АТФ:

М (С 10 H 16 N 5 O 13 P 3) = 12 × 10 + 1 × 16 + 14 × 5 + 16 × 13 + 31 × 3 = 507 г/моль.

● При гидролизе 507 г АТФ (1 моль) выделяется 40 кДж энергии.

Значит, при гидролизе 1000 г АТФ выделится: 1000 г × 40 кДж: 507 г ≈ 78,9 кДж.

Ответ: при гидролизе 1 кг АТФ до АДФ выделится около 78,9 кДж энергии.

6. В одну клетку ввели молекулы АТФ, меченные радиоактивным фосфором 32 Р по последнему (третьему) остатку фосфорной кислоты, а в другую - молекулы АТФ, меченные 32 Р по первому (ближайшему к рибозе) остатку. Через 5 мин в обеих клетках измерили содержание неорганического фосфат-иона, меченного 32 Р. Где оно оказалось выше и почему?

Последний (третий) остаток фосфорной кислоты легко отщепляется в процессе гидролиза АТФ, а первый (ближайший к рибозе) – не отщепляется даже при двухступенчатом гидролизе АТФ до АМФ. Поэтому содержание радиоактивного неорганического фосфата будет выше в той клетке, в которую ввели АТФ, меченную по последнему (третьему) остатку фосфорной кислоты.